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STRESS AND DISTORTION ANALYSIS OF A SWEPT BOX BEAM

HAVING BULKHEADS PERPENDICULAR TO THE SPARS

By Richard R. Heldenfels, George W. Zender,
and Charles Libove

SUMMARY ' .

A method is presented for the approximate calculation of the
stresses and distortions in a box beam representing the main structural
component of a swept wing with a carry-through section and with bulk-
heads perpendicular to the spars. The outer and carry-through sections
of such a wing can be analyzed by existing methods if some means is pro-
vided for analyzing the triangular section which connects them. In the
method presented the triangular section’is divided into free bodies and
then equilibrium and continuity are established between these- bodies.
The result is & system of linear equations which can be solved for the
rotations and translations of the three vertical edges of the triangular
sectlon.

The application of the method is illustrated by a numerical example
and the results are compared with previously published test data. The
agreement is fair, with the principal discrepancies being due to the
fact that the method is based on a very simple type of ideslized struc-
ture which prevents the appearance of shear lag in the results. Exten-
slon of the basic approach to permit the inclusion of shear lag is
indicated. The effects of the shear and bending flexibility of the
bulkheads bordering the triengular section are investigated and are
shown to be important.

A INTRODUCTION

Experimentel investigations of swept box beams (references 1 and 2)
have shown that the stresses and distortions in a swept wing can be
eppreciably different in character from those that would exist if the
root were normal to the wing axis., The principal effect of sweepback on
the stresses occurs under bending loads .and consists in a concentration
of bending stress and verticel shear in the rear spar near the fuselage.
With regard to distortiomns, the effect of sweep is to produce some twist
under loads that would produce only bending of an unswept wing and some
bending under loads that would produce only twist of an unswept wing.
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A relatively small amount of theoretical work has thus far been
published on the analysis of swept wings of the shell type. Reference 3
presents an energy method for determining influence coefficients of a
swept box beam with bulkheads parsllel to the flight path, and refer-
ences 1 and 2 contain a semiempirical method for the deflection analysis
of a swept box beam with bulkheads perpendicular to the spars. No pub-
lications are kmown to be available on the stress anelysis of a swept
box beam with either type of bulkhead arrangement.

The purpose of this paper 1s to present a method for the calcula-
tion of both stresses and distortions of a swept box beam representing
the main structural component of a swept wing with a carry-through sec-
tion and with bulkheads perpendicular to the spars. The analysis is
based on the four-flange idealized structure illustrated in figure 1.
In a four-flange box beam of this type the carry-through and outer sec-
tions can be analyzed by existing methods for unswept four-flange box |,
beams if some means is provided for anslyzing the trilangular section
which connects them.

A method is presented for anslyzing an idealized representation of
the triangular section end for establishing continuity between the parts
of the box beam; consideration is also given to the relationships between
the idealized and actuel structures and a comparison between the stresses
snd distortions calculated by this method and the experimental data of
references 1 and 2. In the discussion, the effects of shear lag, which
the method camnnot give, are considered and an extension of the basic
approach to permit their inclusion is indicated; also, the importance to
the analysis of ‘including the shear and bending flexibility of the bulk-
heads bordering the triangular region is demonstrated. A complete
numerical example is worked out in an sppendix.

SYMBOLS

Principal Concepts

A ares, square inches
a,an length of bay, inches
83 coefficients of matrix -

Bn,Cn,Dyy arbitrary constants in solution of a differential equation
b width of outer section, inches

b? width of carry-through section, inches




NACA TN 2232 . 3

N,N*

w a o

depth of box beam or bulkhead, irches

modulus of elasticity, psi

force group statically equivalent to a bending moment, pounds
warping stiffness parameters |

modulus of rigidity, psi

width of plate, inches

moment of inertis, :anhesl"

torsion constant, inchesh

stiffness factors of outer a.nd carry-through sections
length of outer section, inches

length of beam, inches

bending moment, inch-pounds

sumations used in appendix B

sxial load in flange or stringer, pounds

ares moment, inches3

shear flow, pounds per inch

ratio which bas the value +1 for symmetrical loads and -1 for
antisymmetrical loads

torque, inch-pounds

sheet thickness, inches

strain energy, inch-pounds

displacement in the x direction, inches

vertical shearing force, pounds °
downward displacement or deflection, inches

self-equilibrating, statically indeterminate force group, pounds




X,Y,2

a,B,d,c,w

¢, -

NACA TN 2232

rectangular coordinates, inches

distance from front spar to a specified center, inches
stiffness factors of beams

shear strain

pondimensional parameters used in discussion of idealization
angle of twist, radlans

angle of sweep, degrees

effective width, inches

Poisson's ratio (assumed to be 1/3)

effectiveness factor

normal stress, psi
shear stress, psi
stress function .

Jjoint rotations, radians (see fig. L)

Subscripts

Subscripts are used chiefly to designate the location of a dimen-
sion, force, or stress, as follows:

b

———— e - —-

value at x

cover of the box beam

web of the box beam or bulkhead

" front spar or flange (see fig. T)

left-hand end of beam
along length of beam

value at x 1

(appendix B)
0

———— = ~—- -t - -
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P plate

R,r rear spar or flange (see fig. T)
R right-hand end of beam

X,y coordinate éiis

8 stringer

1,2,3...n specific locations shown in figures; also, numbers to identify
stiffness factors

The single exception to the foregoing convention is:
e effective when applied to area, thickness, or moment of
inertia
Superscripts

Superscripts are used to designate stresses and distortions
produced by different types of action, as follows:

bending
F-force group
rigid-body displacements

torsion

warping

Ni.'labd"dhj

X-force group

flexure

Q

T shear

ANALYSIS OF THE IDEALIZED STRUCTURE

Basic Assumptions

/

The type of idealized structure analyzed is shown in figure 1. It
is & four-flange box beam, which is considered swept back in order to

e e i R e B e P USRS SO
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avoid ambiguity in the designation of the front and rear spars. The
sweptback parts are made up of two trianguldr sections and two rectan-
gular outer sections which are symmetrical about and contimuous with a
rectangulsr carry-through section representing the part of the wing
within the fuselage. The outer and carry-through sections contain bulk-
heads which are placed perpendiculaer to the spars but the triangular
section contains no bulkheads. All cross sections are symmetrical about
a horizontal plane through the mid-depth of the spars.

The box beam is supported, either rigidly or elastically, at the
four corners of the carry-through section so that the reactions are
simple vertical forces. It is loaded by &a series of verticel forces as
shown in figure 1. The resulting stresses are within the elastic range.

" The longitudinal direct stress in the idealized structure 1s assumed
to be carried only by the concentrated areas at the corners of the cross
section, and the side walls (spar webs) and covers are assumed to support
shear stress only. The shear flow in the triangular cover sheets is
assumed to be constent throughout the element (qs in fig. 2). This
assumption implies the existence of uniformly distributed normel forces
on the hypotenuse of the triangular cover sheet but, since the adjacent
carry-through section can cerry normal force only at its corners, these
distributed forces are lumped into two statlcally equivalent concen-
trated forces (P5 in fig. 2) at the ends of the hypotenuse. This
assumption of uniform shear stress in the trianguler sheet is approxi-
mately Justified by the experimental date of references 1 and 2.

The two bulkheads which border the triangular section are assumed
to be beams with finite shear and bending stiffness in their own plane
but with no resistance to distortion out of their plane.

The relationship between the idealized structure described above
and an actual structure is discussed subsequently.

Method of Analysis

The method of analysis is based on the assumption that the outer
and carry-through sections can be analyzed by existing methods and that
all that is then required is a means of establishing continuilty between
them through the triangular section. In order to accomplish this result,
the structure is divided into a number of component parts as shown in
FPigure 2. The forces assumed to exist on the cut sections are also
shown. )

The first step in the analysis is to consider the vertical edges of
the triangular section (Joints 1, 2,.and 3) as free bodies (fig. 3) and
to write equilibrium equations for them. These equations Iinclude two
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for moment equilibrium and one for vertical shear equilibrium at each
joint or a total of nine equations. The number of equations is con-
siderably less than the number of unknown forces, and the problem is
therefore statically indeterminete. The number of equations, however,
is exactly equal to the number of displacements required to specify the
attitude and position of the three Joints. These displacements include
two rotations and & vertical translation of each joint, as shown in

figure 4.

The next step in the anelysis, therefore, is to establish force-
displacement relationships for each component of the structure shown in
figure 2. Through these relationships the forces appearing in the
equilibrium equations can be replaced by the Joint displacements and the
loads applied to the 'structure. The nine equilibrium equations then
contain as unknowns- only the nine joint displacements and can be solved
similtaneously for the displacements. Once the joint displacements are
known, the force-displacement relationships can be used again to deter-
mine the stresses and distortions of the entire structure.

If one, or both, of the bulkheads (1-3 or 2-3) is.assumed rigid
in its own plane, certain reletionships among the joint displacements
are immediately evident; thus the number of equilibrium equations needed
is reduced and the analysis is simplified.

In an analysis of this type many of the factors involved depend
upon the nature of the applied load (symmetrical or antisymmetrical,
bending or torsion) and it may therefore be advantageous to make &
separate analysis for each type of load and then superimpose the results
to obtain the desired solution. For convenience in the detailed develop-
ment which follows, however, provisions for both bending and torsion
are included simultamecusly but with restrictions that they are elther
symmetrical or antisymmetricel about the carry-through section.

Joint-Equilibrium Equations
If the three Joints shown in figure 3 are considered as free bodies,
a total of nine equilibrium equations can be written, two for moments
and one for vertical shear at each joint, as follows:
Joint 1:
Py -P5 - P cosA =0 (1)
P9+PlsinA=0 (2)

vy + olag - gg - ag) = 0 @
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Joint 2:
Pp - Pyg = O , (4)
Py =0 ' (5)
V2 + c(ql -9 - qlo) =0 (6) .
Joint 3:
Pg + Py cos A - P3 sin A =0 (7
P6-P5-PhsinA-P3cosA=0'_ (8)
‘ V3+c(q9+qlo-q8+q3)=0 (9)

Inasmuch as the number of unknown forces appearing is greeter than
the number of equations, the problem is statically indeterminate. The
principle of consistent displacements will therefore be used to obtain
& solution. .

Force-Displacement Relations

The attitude and position of the joints can be completely described
by nine Joint displa.cements » two rotations, and a vertical translation
at each joint (fig. 4). Thus the number of unknown Jjoint displacements
is exactly equal to the number of equilibrium equations, so that a solu-
tion is possible if sufficient force-displacement relations can be writ-
ten to express all the unknown forces in terms of the nine Joint
displacements.

A1l the internal forces (P's and q's) shown in figure 2 can be
expressed in terms of the unknown Joint displacements and the loads
applied to the outer section, with the use of the force-displacement
relationships for each component of the structure. All that remain are
the three vertical forces (V's) at the jJoints which are a combination of
the vertical loads applied to the triangular section and the statically
indeterminate support reactions. Since these forces are dependent upon
the nature of each individual problem, they will be temporarily treated
as known quantities; the modifications required for different types of
supports are discussed in a subsequent section.

The force-displacement relationships for each component can be
written as indicated in the following sections.

f e e e e ey S s
- - A
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Beams.- The two bulkheads 1-3 and 2-3 and that part of the front
spar 1-2 bordering the triangular section can be analyzed as beams sub-
Jected to end shears and moments plus & running shear along the flanges.
This running shesr results from the shear flows in the covers adjacent
to the flanges. The loading and distortion of a beam of this type is
1llustrated in figure 5. In appendix A, this type of beam is analyzed
and the following general expressions are obtained for the end loads in
terms of the end displacements, the running shear, and certain stiffness
parameters which include both the shear end bending resistance of the
beam:

g, = (@ - B)¢L a + 2(a - B)—L—i-iR- - €q, (10)
Wr -
PL=—G¢L+B¢R-(G-ﬁ)—L—123-5q1 (11) .
pR=-3¢L+a¢R+(m-B)m-——;m+5Qz (12)
where
1/h Y\ET
*= 5<§ * Gctla)
v a o lf2, kBT
b= “’( 3¢ Gctla)
1{2
5= a(a)
1/c
€= E(E'I')
@D = El !‘. + hEI
EI\3  gcti2
and
EI bending stiffness of beam .

Get shear stiffness of beam
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Specific force-displacement relationships for each of the beams can
be obteined by application of these general equations with the following
results: ' -

Front spar 1-2:

'chosA+’sinA+ -
P ST /e S

(13)
e
P = -Gla('\lf]_ cos A + @, sin A) + Biofp - (@ - Blio 35 s + 81295 (1%)

Py = '512(‘1'1 cos A + ¢l sin A) + a.12¢2 + (a - 3)12 % - 8129.5 _(15)
Bulkhead 1-3:
#1 - ¥3 cos A+ @3 sin A W) - w3
% = (@ - B3 b sec A * 2l - B3 g,
%3 (‘17 + ap) - (8
W =W
Pg = -a13f1 - 1313(1113 cos A - §3 sin A) - (e - p)13 ils?:_j% - _
813 (a7 + 1) (M)
W =W
Py = Pygfy - o3t o A - Fy stna) + (o - g S nt
- Bas(s7 * ) (e
Bulkhead 2-3:
Vo + ¥ W - W
q.lo = '(C!: - 5)23 _2—-5"'_3' - 2(“ - 5)23 '—3?'% + 523(9.).'_ - 95) (19)
W = Va
'Pl|. = —(1.23¢’23 + 523‘?2 - (G - 3)23 3 B - 823(Q)+ - q.lj) (20)




NACA TN 2232 1l

In these equations the subscripts 12, 13, and 23 applied to the
stiffness paremeters o, B, B, and € refer to the front spar 1-2
and the two bulkheads 1-3 and 2-3, respectively. Several unknown forces,
namely, aq, a5, a7, and gj;, which do not occur in the Joint equi-
librium equations, appear on the right-hand sides of equations (13) to
(21) 3 these forces, too, can be expressed in terms of the nine Jjoint dis-
placements when the other structural components are considered.

Trisngular cover gsheet.- The triangular cover sheet 1s assumed to
carry a uniform shear flow a5 along its mutually perpendiculer edges

(1-2 and 2~3). In order that this element be in equilibrium, shear and
normal stresses are required along the hypotenuse and the corresponding
forces are shown (fig. 2) as a uniform shear flow d;7; acting along
that edge and a pair of concentrated forces Ps5 acting at the Jjoints.
The equilibrium equetions are:

q_ll -Q5 cos 2A (22)

P5 = -q_5b sin A . (23)

Force-displacement relationships are obtained by assuming that the
maximm shear strain in the sheet i1s equal to the amount by which the
right angle 1-2-3 is changed. In terms of the Jjoint rotations, this
ghear strain is:

¥; sin A - @, cos A - ¥, ¢-¢)
_c( 1 2 3 2
7123 = 2( b tan A T (2k)
Then,
= Gte os A- Y cot A-@ cos Acot A-g,_ + ¢ ) (25)
%5 = %o (*L c 2 1 2773

and the relations for Q9 and P

5 follow immedistely from equa- -
tions (22) and (23). '

Outer section.- That part of the structure outboard of bulkhead 2-3
acts as en unswept cantilever box beam supported on a flexible root and,
as such, can be analyzed by existing methods of analysis. The stresses
and distortions at any point can be expressed in terms of the applied
loads, the distortions of the root, and certain elastic stiffness
factors. Then, the force-displacement relationships required to define
the internal forces at the root are:

e - e - -
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P3 = KM - koT + k3(¢2 - #3) (26)
’ P1o = ki + kT - k3(fp - 93 (27)
ap = k¥ + kgl + k(B - #3) (28)
a3 = -kgoV + kT + k(fp - #3) (29)

g 4T ki (F - ) (30

In these equations V, M, and T represent, respectively, the applied
verticel shear,’bending moment , and torqie (a.'bout some reference axis)
at the root of the outer section and the k's represent elastic stiff-
nesses of the outer section. The stiffness factors kj, ko, ki and
the like are functions of the distribution of the applied loads and the
dimensions and material of the outer section, whereas k3 and k7t
depend only on the latter. The quantity ¢2 - ¢3 is a measure of the
warping of the root cross section and is the only root distortion
appearing in the equations, since the others are rigid-body movements
which do not affect the stress distribution. Thus, effectively, the
root bulkhead is assumed rigid in its own plane as far as the outer-
section analysis is concerned.

Any method of analysis can be used to determine the stiffness
factors provided that cross-sectional warping and its restraint are
taken into account. This provision requires a more refined approach
than is made in elementary bending theory. The stiffness factors are
the same for symmetrical and antisymmetrical loadings but, since bending
and torsion produce different types of effects, they have been separated
in the equations. In order to evaluate the torque T, the loads must be
referred to a reference axis. The most deslrable axis is one which makes
the stresses at the root due to the bending moment M egqulvalent to
those given by elementary theory, although it is not generally possible
to achieve this relationship at all stations. The so-called "shear
center" does not locate such an exis. The choice of a reference axis
will be treated at greater length in the section on idealization.

Carry-through section.- The carry-through section, like the outer
section, is a box beam that can be anslyzed by existing methods. .In
this case, however, the stress distribution is expressed in terms of
only the end distortions since internal end forces are the only loads
applied. The force-displacement relationships are then:

Pg = ky1(¥) + ¥3 sin A + 3 cos A )+ kyp(¥y - ¥3 sin A - f3 cos A) +

K3 + w3) + k(- w3) (31)
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Py = k15(1lfl + ¥3 sin A + ?53 cos A)+ kls(\lfl - ¥3 sin A - g3 cos A) +

5

7(W1 + W3) + k18(W1 - W3) _ (32)

q6=k19(‘l’1+‘lf3 sinA+¢3 cosA) +k20(¢1 - ¥3 sin A -¢3 cosA) +

Ipq iy + w3) + koo - w3) ' (33)
ar = k23(‘|'1 + ¥3 sin A + ¢3 cos A)+ kgl;_("l"l -V¥3sinA - ¢3 cos A) ¥

k25 (wl + w3) + k26(w1 - w3) \ (34)
q8=k27 ‘l;l+‘|’3 sinA+¢3 cosA) +k28(""], -\lf3 sinA-¢3 cosA) +

kpg ("’1 + w3) + k30(wl - w3) (35)

In these equations, the k's represent elastic stiffness factors, which
depend upbon whether the loading is symmetricel or antisymmetrical, as
well as upon the dimensions and material of the carry-through section.
They may be determined by any method of analysis as long as cross-
sectionsl warping and the shear and bending stiffness of the spars are
considered. The displacements which appear have been so grouped that
they have a particular physical meaning. Thus, the quantities assoclated
with the first, second, third, and fourth terms in parentheses represent
a bending type of rotation, a warping, a translation, and a torsion type
of rotation of the end cross section, respectively.

Solving for the Joint Displacements

The force-displacement relationships (equations (13) to (35)) are
sufficient to express all the internal forces in the equilibrium equa-
tions in terms of the nine- basic joint displacements and: the applied
loads. Upon substitution, the nine equations involve only nine unknown

W W, W
1 2
displacements; namely, V¥7, Vo, "Ir3: ¢1: ¢2: ¢3: B B’ '33‘5

and they can then be solved numerically for these unknowns.

The equations obtained by direct substitution have coefficients
conteining many terms which are tedious to evaluate; however, & number
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of combinations can be made which substantially simplify the final
equations. Equations (1) to (9) are combined as follows to obtain nine
simpler equations:;

[@) - (8)] sec & - (4) + (5) tan A (36)
K2) + (T):I csc A + (4) + (5) cot A (37)
1) + 6) + (9)] (38)
(%) ‘ (39)
1 -
= ko
(5)823 (%0)
2(6) tan'n (k1)
(T) sec A+ (5) (42)
(8) sec A~ (5) tan A {43)
+9) sec A ()
The resulting system of equations is written in matrix form as
follows:
a1 =10 ®13 a1y 815 816 817 g ayg| | V1| [eio
8p) 8p 8p3 8ol 835 85 8a7 88 a9 | | V2| |aoo
8.31 8.32 8.33 8.3)4_ a.35 8.36 8.37 8.38 8.39 1‘3 8.30
ey ey ey3 ey ays Bue sy au8 =i | | fu|  [ewo
851 852 8537 a5k 855 856 a5y 858 asg | | f2| = jaso (45)
861 262 263 8L 865 866 26T 268 269 ¢3 260
w1
&L 872 873 &7k a5 876 a7y 878 a79 | | % &70
W2
g1 @g2 283 &gy 885 8ggc 287 288 289 'y 280
w
agl age a93 agh a95 ag6 agy a98 ag | || |e90

The coefficients ajj are given by the expressions in table I.
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The terms In the matrix of coefficients involve the elastic stiff-
ness factors and dimensions of the structure; the constant terms contain
elastic stiffness factors, the loads applied to the outer section, and
the vertical forces at the Joints. Xach of these Joint forces contains
a component of the load applied to the triangular section and, in addi-
tion, V1 and V3 contain the support reactions which may be statically

indeterminate. The loads applied to the triangular section are so
divided among the three vertical edges that the resulting forces form a
statically equivalent system. The reactions depend upon the nature of
the supports and are introduced into the analysis as indicated in the
following sections.

Rigid supports.- In the cese of rigid supports w1 and w3 are
zero eand there are thus seven unknown Jjoint displacements which require
only seven equations for their determinstion. In the matrix, equa-
tion (45), columns 7 and 9, which are the coefficients of w1 and w3,

respectively, can be lmmediately eliminsted. The required seven equa-
tions are then obtalned by the eliminstion of two rows, the logical ones
being rows 3 and 9 since they are derived from equations containing the'
unknown support reactions. After the Joint displacements have been cal-
culated, V3 and V3 can be determined by substitution into equa-

tions (3) and (9).

Elastic supports.- For the case of elastic supports, all nine equa-
tions are required but must be modified to include force-displacement
reletionships for the supports. The Joint forces can be expressed as
follows:

V1 = k1w + vy!
V3 = kgowp + V3'
where
k support stiffness factor

v component of loads applied to triangular section

Calculating Stresses and Distortions Throughout

the Idealized Structure
The stress and distortion distributions for the complete box beam
have been defined in terms of the applied loads and the nine Joint dis-
placements. Once these Joint displacements have been determined by
solving equation (45), the procedures outlined previously can be reversed
and all of the forces at the Joints can be calculated.
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Determination of the detailed distributions is slightly more com-
plicated. For the front spar and the two bulkheads bordering the tri-
angular section, the equations of eppendix A can be used. For the outer
and carry-through sections, the complete stress distribution can be
determined from the analysis that was used to obtain the stiffness
factors ki to k3o0. The effects of rigid body motions, which do not

affect the stresses, must be included in the calculation of distortions.

The relationships between the computed stresses in the idealized
structure and the actual structure are discussed in the section on
idealization, which follows.

IDEALIZATION OF AN ACTUAL STRUCTURE

Outer and Carry-Through Sections

-

The outer and carry-through sections are unswept box beems which
can be analyzed by existing methods of analysis. Since such methods are
by no means stendard, however, a definite procedure is presented in
order that the idealization of the complete structure masy follow a
consistent pattern.

The basic assumption that the idealized outer and carry~-through
sections are conventional four-flange boxes implies that the normal
stress in the walls of the actual box beam varies linearly between
adjacent cornmers. A generalized stress distribution of this type can
be represented by & linesr combination of the two stress distributions
shown in figure 6(a), one of which equilibrates the applied load and is
uniform across the cover, while the other is self-equilibrating and
varies linearly across the cover. The uniform distribution is designated
bending stress because it is obtained from elementary beam theory which
assumes that plane cross sections remain plane after loading. Similarly,
the linearly varying stress is designated warping stress because it is
associated with the warping of the cross section out of its plane.

The .normal stresses on the actual cross section are represented by
four concentrated forces at the corners of the idealized cross section.
The totel force at each corner consists of two components, one from the
F-force group corresponding to the bending-stress distribution and one
from the X-force group corresponding to the warping-stress distribution,
as shown in figure 6(b). The equivelence between the force group end
the corresponding distributed stress is determined on the basis of over-
all statics of the cross section and the moment epplied to each cover.
The effective flange areas of the idealized structure are then chosen so
that the flange stress in the idealized structure is equal to the cormer
stress in the actual structure.
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A cross section of the type shown in figure T(e) can then be
idealized as follows:

(1) Obtain the equivalent cover (fig. T(b)) by adding, to the
actual cover and corner flanges, areas representing the moment-carrying

capacity of the webs; that is, gctr and %ctf; the area of the
equivalent cover is therefore:

Ap = Ap + cbe + Ar + oty + bbb +)__ (Ag)y (46)
. n

(2) Locate the centroid of the equivalent cover:

o'l<q]

- T:xLS ot + Ar + chtr + g (As %)n (¥7)

(3) Calculate the moment of inertis of the equivaelent cover about
a vertical axis through its centroid: .

B fee i (o BB ol BF

X han2? - 2y (48)

(4) The effective area of each front flange is then:

(2) For bending stresses:

: @=('9%=@'3% (49)

where I 1is the moment of inertia of the entire cross section about
the horizontal axis of symmetry.

(b) For warping stresses:

_ Tp/p®

o = 2 (50)

. e —e——a - ——- - o T e (g
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(5) The effective area of the rear flange in each case is:

_ N
J
B=B b_
Ry
- e (51)
AR=AF1_2 ) '
b

If meny equally spaced stringers are used, satisfactory results
can be obtained by treating them as an equivalent sheet and. . thus
eliminating the evaluation of lengthy summations.

It is important to note that a different effective area is
associated with each type of stress distribution, as should be expected,
since each is assoclated with a different type of physical action;
therefore, if accurate results are to be obtained, the two types of
stress distributions must be completely separable in the analysis, that
is, they do not appear simulteneocusly in the evaluation of any one
stiffness factor in equations (26) to (35). This separation is not
generally possible; however, one wey to accomplish complete separation
in the outer section will be described. Similar considerations apply
to the cerry-through section.

The outer section is an unswept cantilever box beam on a flexible
root and the forces on any cross-section as given in equations (26)
to (30) can be expressed as the sum of: (1) forces that exist in the
loaded cantilever on a rigild root and (2) forces that exist in an-
unloaded centilever having the root warped an smount (f, - #3). Since

root warping produces only warping stresses, the effective areas for
warping stresses (equations (50) end (51)) are used for the determina-
tion of the stiffness factors k3 and ky. The choice of effective
areas for the analysis of the loaded cantilever is more difficult because
the application of vertical loads will, in general, produce both bending
and warping stresses; however, since torque loads produce only warping
stresses, it may be possible to locate some axis along which applied
vertical loads will produce only bending stresses at every cross section;
then, the loading can be divided into vertical forces applied along this
exis and torques about this axis. The stress types are thus separated
and the effective areas for bending stress (equations (49) and (51)) can
be used to calculate the stiffness factors associated with the vertical
loads (kl, k), k5, kg and klo) and the effective areas for warping
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stresses (equations (50) and (51)) cen be used to calculate the stiff-
ness factors (k2’ kg, and k9) associated with the torque.

An axis of the type described obviously exists for a doubly
symmetricel cross section; such an exis is slso known to exist for a
four-flange box beam of constent cross section which is symmetrical
ebout e horizontal plane (fig. T(c)). The location of this axis, at the
center which might be called the zero warping center of the cross
section, is gilven by:

%=%+;%@-ﬂ' | (52)

where

b c

—_— =

¢ tp te
b _c
tp te

The zero warping center should not be confused with the shear center.
Vertical loads epplied along an axis through the shear center will
deflect the box beam without twisting it, if the cross sections are free
to warp, a condition that is not satisfied at the rigid root of a
cantilever. Vertical loads applied along an axis through the zero
warping center will result in a combination of deflection and twist, but
the cross sections of the box will not warp. If the cross-section is
doubly symmetrical, the zero warping center and shear center coincide at
the geometrical center of the cross section.

The preceding discussion has been exclusively concerned with the
problem of converting the actual structure into an idealized structure
that can be easily analyzed. After the analysis has been completed and
the magnitudes of the cormer forces determined, the problem of con-
verting corner forces into stress distributions arises. This conversion
of forces 1is accomplished by determining the stresses corresponding to
each type of force group (F or X) and then summing the stresses to get
the total stress. The relationship between force groups and stress
distributions are shown in figure 6. The type of force group is. deter-
mined from physical considerations; for example, equation (26) shows
that P3 is composed of three forces of which kKiM 1is of the bending

type whereas k,T and k3(¢2 - ¢3) are of the warping type.

[y
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With regard to shear stresses, the analysis of the idealized
structure gives the average value of the shear flows in the walls of
the actual structure. A more detailed shear-stress distribution can be
derived from the distributed normal stresses; however, this additional
refinement is probably unwarrasnted in view of the many approximations in
the basic solution.

Triangular Section

The idealized trianguler section consists of three parts: the two
cover sheets which are in a state of uniform shear,-and the front spar,

which is assumed to be a beam.

The thickness assigned to the idealized cover sheet should properly
represent the shear stiffness of the actual cover. For unbuckled sheet
' alone,.this thickness is that of the actusl sheet. This value should be
decreased if the sheet has buckled or increased if there are closed-~
section stringers which contribute to its shear resistance. Similar
considerations apply to the determination of the shsar resistance of
any other element of the structure.

In the calculation of the moment of inertias of the front spar, a
contribution from the sheet and stringers in the cover of the trianguler
section must be included to account for their ability to carry direct
stress. For simplieity, the moment of inertia of the idealized front
spar is assumed constant in the spanwise direction and thus may be deter-
mined by treating the trianguler bey as a rectangulaer bay of constant
cross section equal in width to the triangular bay where it Joins the
outer section; an effective area mey then be assigned to the idealized
front spar by the method recommended for the outer section. This ideal-
ization will result in two moments of inertia, one for bending and one
for warping stress. Agein, separetion of these two stress systems in
the analysis is desirable ‘but in this case 1t is only partly possible.

If the load on the outer section is torsion only, dhly warping stress
will exist in the triangulasr section and the effective warping area
should be used. If the loads on the outer section are of the bending
type only, both kinds of stresses will exist in the triangular section
and direct separation is impossible; however, the warping stress is
usually small compared with the bending stress and in such cases
satisfactory results can be obtained by using the effective bending area.

Bulkheads -
When values of flexural stiffness are assigned to the two bulkheads

bordering the trianguler section, consideration must be given to the
fact that bending of these beams is accompanied by extension or
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compression of the adjacent cover sheets. The analysis in appendix B
gives the distortions of a combined bulkhead and cover sheet and the

moment of inertie of a simple bulkhead which has the same distortion.
The results can be summarized as follows:

Te = I(1 + V) (53)
where
I moment of inertia of bulkhead alone, :I.nchjeslL
I effective moment of inertia of combination, inchesh
v an effectiveness factor plotfed igéiisure 8 as a function of
the nondimensional parameter ( T )
c depth of bulkhead, inches
1 length of bulkhead, inches
te equivalent thickness of the cover sheet, inches (t ——§§EEEET>
Epulkhead
E modulus of elasticity, psi

COMPARISON BETWEEN THEORY AND EXPERIMENT

The accuracy of the method is demonstrated by comparing calculated
stresses and distortions with the test data of references 1 and 2. The
test specimen used 1s illustrated in figures 9 and 10 and the detalls
of the calculations are given in the numerical example of appendix C.
The comparisons are presented graphically for each of ‘the four test
conditions, symmetrical and antisymmetrical tip bending and torsion
loads as follows: ’

(&) Distortions of the outer section in figure 11

(b) Spanwise distribution of spar shear stresses shown in the left-
hand parts of figure 12

(c) Spanwise distribution of flange normal stresses shown in the
right-hand parts of figure 12

(d) Chordwise distributions of normal stress at three spanwise
stations in figure 13
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In each case the sign conventions employed are those of references 1
and 2 vhich are occasionally in conflict with those employed elsewhere
in this paper.

The test data in these figures are presentea in the usual manner
and several calculated curves are given to illustrate different theo-
retical approaches, as follows:

(a) A1l figures contain a heavy solid line which represents the
results of the mumerical example of appendix C. The area under this
curve is vertically hatched in the stress plots (figs. 12 and 13).

(b) A dash-dot line appears in.some Figures to show the effect of
superimposing shear-lag effects on the results of the numericel example.
The determination of these effects is described in the discussion.

(c) The stress plots also contain desh lines which give results

obtained from elementary theory (%?, %%, and I

2At)°

‘In general, the results of the numerical exsmple (solid lines) are
in falr agreement with the test data; however, much better agreement is
achieved when shear-lag effects are added where spplicsble. Elementary
theory gives the least satisfactory results since it does not include
the effects of either sweep or shear lag. The discrepancies between the
calculations of the numerical example and the experimental date are
primarily the result of analyzing an overly simplified idealization of
the actual structure. The assumed idealized structure is incapable of
distorting in all of the shapes assumed by the actual box beam; therefore,
the analysis cannot give completely accurate results. The most signifi-
cant effect of oversimplification is the neglect of shear-lag stresses.
Shear lag sppears whenever the webs carry vertical shear stress and it is
characterized by an Iincrease in normasl stress in the vicinity of the’
flanges with a corresponding decrease in the rest of the cover (see
fig. 14). There is also an associated change in the shear stresses in
the cover.

The effect of shear lag on the stress distribution is most evident
in the chordwise plots of figure 13. It appears in the ocuter section
for the bending loads and in the carry-through section for the anti-
symmetrical loads. In each case the effect is carried over into the
triangular section because of continuity.

) Shear-lag stresses effectively reduce the stiffness of the structure
and thus increase its deflection. The cantilever beam deflection of the
outer section is increased by its own shear lag, but for this specimen
the increese was small enough to be neglected. More important is the
reduced stiffness of the carry-through section under antisymmetrical
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loads which results in an increased rotation of the ends of the carry-
through section. This effect causes only a rigld-body rotation of the
triangular and outer sections since the carry-through section is doubly
symmetrical. The effect of shear lag in the carry-through section was
estimated by reducing the moment of Inertia of the carry-through section
(Ie = 0.252I) by the procedure described subsequently in the "Discussion"
with the results shown in figure 11(b) and 11(d). For the antisymmetri-
cel bending load the effect was underestimated whereas it was over-
estimated for the antisymmetrical torsion load.

Some other effects of oversimplification are associated with the
idealization of the triangular section. The actual structure had a
short bulkhead (bulkhead 7, fig. 9) in the triangular section which was
neglected in the anelysis. Its presence introduces additional restraints
which chenge the shear stress in the front spar (fig. 12) and the chord-
wise normel-stress distributions in the carry-through section (fig. 13).
Also, a number of approximations were used with regerd to the effective
moment of inertia of the front spar which introduce uncertainties in
the ansalysis. -

Another factor that affects the agreement is the flexibility of
the supporting jig used in the tests. This jig was assumed rigid in
the anslysis but deflected during the tests. Under symmetrical loads
(reference 1) these deflections amounted to a rigid-body rotation of
the complete structure end it was a simple matter to correct the meas-
ured deflections; however, under antisymmetrical loads, a small amount
of twist remained In the carry-through section after the rigid-body
corrections had been made (reference 2). The method of analysis devel-
oped in this paper was used to calculate the effect of the measured
carry-through section twist on the theoretical stresses and deflections.
For the antisymmetrical bending load the principal changes were in the
shear stresses in the carry-through section, as might be expected,
because of the torque required to twist this section. The warping
stresses also changed throughout the box beam and the deflection of the
outer section increased. For the antisymmetrical torsion load the twist
was small enough to be negligible., In general, these changes improved
the agreement between theory and experiment but were not of sufficient
magnitude to warrant their addition to the calculated results.

DISCUSSION
Determination of Shear-Lag Effects
The method presented in this paper is for the analysis of a four-

flange box beam which experiences only first-order werping. Thus, the
stress distribution in the actual structure veries linearly between
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corners and consists of the bending and warping stress components shown
in figure 6. An actual structure experiences other types of cross-
sectional warping, a common one being the second-order or shear-lag
type which introduces a departure from linearity in the cover stresses
by superimposing a self-equilibrating stress distribution of the type
shown in figure 1l4(a). The experimental data of references 1 and 2
show that shear lag is important in the specimen tested because it
causes an increase in the flange normal stresses which is, in some cases,
larger than the changes caused by first-order warping end increases the
flexibility of the structure which increases the deflections. Some
means for calculating these effects is therefore necessary.

Any method used to calculate shear-lag effects requires the
analysis of a more complicated idealized structure than the four-flange
box beam. Conforming to the previous assumptions regarding the stress-
carrying ability of the idealized structure, the minimum addition 1s a
single central stringer in each cover as shown in Ffigure 14(b); other
additional cover stringers permit calculation of the effects of third
and higher order warping. These more complicated structures can be
introduced into the analysis in either of two ways: (1) The basic
method can be extended to the direct analysis of the more complicated
structure and thus automatically include shear-lag effects. (2) The
results of the simpler analysis can be corrected by a process which
combines experimental data and individual shear-lag analyses of the
outer and carry-through section. Each of these approaches is briefly
described.

The direct extension of the basic method involves the analysis of
an idealized structure of the type shown in figure 15. The analysis
follows the procedure previously described but two new features are
introduced. First, more joints are involved, for which additional
equilibrium equations are required and thus a larger system of simul-
taneous equations must be solved. Second, force-displecement relation-
ships for the outer, triangular, and carry-through sections must be
modified to account for the new types of forces and distortions of the
idealized structure.

The correction process can take on a variety of forms, two of which
were used to calculate the shear-lag corrections applied to the results
of the numerical example, appendix C, to obtain the dash-dot lines in
figures 11, 12, and 13. The shear-lag corrections for the outer section
were determined by using the single-substitute stringer method (refer-
ence 4) to calculate the shear-lag stresses in the outer section. The
outer section was analyzed as an ordinary, unswept box beam on a rigid
root and a constent empirical multiplying factor was used to obtain
good over-ell agreement with the experimental spanwise and chordwlse
normal -stress distributions. The multiplying factor accounts for the
root restraint provided the outer section by the triangular section;
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this factor was found to be 0.77 for the symmetrical bending load and
1.28 for the antisymmetrical bending load.

A somewhat different procedure was used to determine the shear-lag
corrections for the carry-through section because it was found that the
shear-lag stresses, caused by the antisymmetricel bending load, could be
approximated by a shear-leg analysis which assumed that the end cross
sections were restrained from warping. This approach, however, was less
satisfactory for the antisymmetrical torque load. The method used
analyzed the cover as an equivelent sheet which carried both shear and
normal stress (reference 5) and it gave better chordwise and spanwise
stress distribytions than a similar analysis which used the single sub-
stitute stringer method. The reduced moment of inertie used to deter-
mine the effect of shear lag on the distortions of the carry-through
section was also obtained from this anslysis.

From considerations of accuracy, the preferred method for the
determination of shear-lag effects is the direct extension to a more
complicated idealized structure; however, such an analysis requires a
large amount of work. The ease with which the correction process can
be used is a definite advantage, but it can be applied, with assurance
of accuracy, only to structures closely resembling the test specimen
from which the empirical factors were obtained. Even then, the correc-
tion process is only fairly accurate because it cannot adequately ,
account for the interaction between the various parts of the structure.

Effects of Bulkhead Flexibility

In the analysis of unswept box beams the internal bulkheads are
often assumed to be rigid in their own plane. This assumption yields
satisfactory results except when a discontinuity of structure or loading,
such as a cut-out, introduces large loads into a bulkhead. A study of
the test results presented in references 1 and 2 shows that bulkheads 6
and 8 (fig. 9) of the test specimen were subJjected to substantial shear
and bending loads; thus, their distortions may have an important effect
on the structure. The shear and bending flexibility of the bulkheads
bordering the trianguler section is included as a basic feature of the
method of analysis presented in this’ paper although the development
could have been considerably simplified by assuming them rigid.

The effect of bulkhead flexihility on the stress and distortioms of
the swept box beam of references 1 and 2 was investigated by solving a
series of numerical examples similar to that of appendix C. These
examples were for symmetrical tip bending and torque loads for the four
cases of bulkhead flexibility listed in the following table (all bulk-
heads other than bulkheads 1-3 and 2-3 (fig. 2) were assumed rigid):

B el it L A iy —— e — —
N e " P £ St e G =
. .
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Case Bulkheead 1-3 Bulkhead 2-3
I Flexible Flexible
II Flexible . * Rigid

111 Rigid Flexible
v Rigid Rigid

Selected stresses and displacements calculated for each case are
compared in figure 16. Despite the fact that the bulkheads were con-

structed of %-inch steel plate, appreciable errors occurred when they

were assumed rigid in their own plane. The effects of bulkhead flexi-
bility on the stresses were more pronounced for torsion than for bending
loads; however, for each type of load the solution for case IV over-
estimated the warping stress in the outer section. The different root
distortions calculated for each of the four cases lead to slightly dif-
ferent deflections and somewhat greater differences between the rotations
of the outer section.

In general, the results indicate that the flexibility of the bulk-
heads bordering the triangulsr section has an importent effect upon the
stresses and distortions of a swept box beam and should be considered
in the analysis if accurate results are-to be obtained.

In addition to the studies of bulkhead flexibility, scme investiga-
tions were made of the effect of the nmumber of bulkheads in the tri-
angular section. For example, a numerical analysis which used the
assumption of closely spaced rigid bulkheads, often used in shell
analysis, gave very erroneous results for the stress distribution in
the triangular section. In all the cases considered, the number o6f
bulkheads in the triangular section had only a small effect on the
stresses outside of the trianguler section. The experimental datae in
figures 12 and 13 illustrate the effect of an extra bulkhead on the
stresses within the triangular section.

Extension of the Method

The method of analysis in the form presented, is not expected to
be generally applicable to the precise analysis of all swept wings
because of differences in structural arrangement and the degree of
idealization assumed; however, the basic approach can be used in many
situations.

Extension of the method to other ﬁypes of swept wings is straight

forward if the bulkheads are perpendicular to the spars. The modifica-
tions required to obtain more accurate stress distributions have been )

- —— ——— -, - - - -
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indicated in the section on the determination of shear-lag effects.
Similar procedures are required for the analysis of multispar box beeams,
that is, additional Joints are created where the spars cross the
bulkheads.

Application of the basic approach to swept box beams in which the
bulkheads are placed parallel to the flight direction introduces scme
new problems. In the first place, a swept wing of this type does not
have an outer section which can he anslyzed by existing methods. Exten-~
sion of the method of joints, which is a feature of the basic approach,
to the entire structure substantially increases the complexity of the
solution and some other approach may be more desirable. A second prob-
lem is the establishment of force-displacement relationships which cor-
rectly predict the physical behavior of the parallelogram-shaped cover
sheets. )

CONCLUDING REMARKS

A method has been described for the stress and distortion analysis
of a swept box beam with a carry-through section and with bulkheads
perpendicular to the spars. The method is based on a simple four-flange
box type of idealized structure and permits an estimation of the first-
order warping stresses that result from sweep but does not permit the
evaluation of higher-order stresses such as shear lag. Agreement with
experiment is therefore only fair; however, extension of the basic
approach to permit more refined analyses, which include shear-lag
effects and other structural arrangements such as multiple spars, has
been indicated. '

The method assumes that the outer and carry-through sections are
unswept box beams and thus can be analyzed by existing methods. Con-
tinuity is established between them through the analysis of the tri-
engular section. The analysis of the triangular section isolates the
structurel Joints as free bodies and gives an equilibrium equation for
each degree of Joint freedom. The Joint forces are expressed in terms
of joint displacements and a set of simultaneous linear equations, which
completely defines the Joint displacements, is thus obtained.

The method takes into account the flexibility, both as regards

shear and bending, of the bulkheads in and around the triangular section.
The results of a numerical study have been presented to show that

R, - [ - m s m et meee e mammm o e s T e S v es s e - m e ge—emw - -
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sppreciable errors can appear in the calculated stresses and deflections
if the ususl assumption of rigid bulkheads is used in this region. .

Langley Aeronsutical Laboratory
National Advisory Committee for Aeronautics
Langley Air Force Base, Va., August 17, 1950
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APPENDIX A
FORCE-DISPLACEMENT RELATIONSHIPS FbR EEAMS

The beam asnalyzed is assumed to be of constant idealized cross
section with a web which carries only shear stress and subjected to the
loading shown in figure 5(a). This loading consists of flange axial
loads Pr, end PR &t the ends of the beam, a constant running shear
flow q; applied to the flanges and a constant shear flowv q, in the
web, The distorted shape of the beam under load can he described by the
end displacements w;, and Wy and the end rotations @; and

(fig. 5(b)).

Consideration of a differential element of the beam (fig. 5(c))
yields the following equilibrium equation

dap

T -4 -9%=0 (A1)

and the following relations between loads and distortion

Q. = Gt( - %xw-) (a2)

Substituting equations (A2) and (A3) in (A1) yields

2
aw __EL a¢ g4 % (ak)
ax Get 4,2 Gt

end, since g, 1is constant, from equation (A2),

ag _ a%

Equations (A4) and (A5) have solutions which can be expressed as
follows: )

g =Cp + Cox + C3x2 (46)

W =0x+ %Caxe + 03(%x3 - %%%E) + C)y + g%x (AT)

B i T T : ———— - e - v~ < -~ e e o ey e e m -
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vwhere C;, Cp, C3, Cy are constants which can be determined from the

boundary conditions. In this case, the boundary conditions are
prescribed as follows:

Wx=0 = VL, )
Wx=1 = ¥R
> ' . (a8)
¢x=o = ¢L ,
By=1 = Pr )

These boundary conditions require that the constants Cn have the
following values:

¢y = ¢, \W
o2 = 3R - ) - o3
\ (49)
! 2(@3 - “r) - Z(¢.R *‘¢&)"§%qz
3721 12 oET '
G * Get
Cy = vy, )

An expression for the load P can be obtained from the substitution
of equations (A6) and (A9) in equation (A3), as follows:

2x 2 YET y ox YRT 2x YR -V, q
¢R(T'§+—)’¢L(§'T+ )*2(7')('—1——""&)

P - Getl2 Get1?
’ El.}.+_.__hEI
EI(3 Gctla)
(410)
Similarly, from equations (A2), (46), (A7), and (A9), '
2 4 cl
2(or + &) + 5l - ) - fo
(a11)

i El——

e = cZ(l LET )
3 @eti?
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The spplied loads can now be expressed in terms of the distortions
if the foregoing equations are evaluated at the boundaries. These rela-
tions for the loads can be conveniently written as follows:

B, = ~aff, + By - (@ - BT - Bg, (a120)
By = By + offg + (@ - BB 4 bg (a120)
g, = (- B)¢L R, 2(a - ﬁ)w—L;?WB - €qg (a12c)

where

3 Gcti®

g=2il-2 AET

o\ 3 Gget1?
_1l(2
5= (&)

o = SLE , MEL
- BIN3 O geti?

It is often desirable to express the distortions in terms of the
loads. These expressions can be obtained from a few simple operations
on equations (A12). Addition of equations (Al2a) and (Al2b) gives the
following relationship between end rotations:

P; + BR
Pr = by + i+5

= fp + SL-(Pr, + ) (a13)
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Substitution of (A13) into (Al2a) or (Al12b) yields the following
alternate expressions for the difference in end displacements

- 2
WR-WL=¢L7-+Q1§Z,E+PLG1.'PR+Z£I(2PL+PR)
(A1k)

- 2
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APPENDIX B
EFFECTIVE MOMENT OF INERTIA OF BULKHEADS

The contribution of the cover sheets of the box beam to the effec-
tive moment of inerties of the bulkheads can be approximated by an
analysis of the plate-stringer combination shown in figure 17.

In the analysis the plate and stringer are assumed to be of dif-
ferent materials but of constant cross-sectional dimensions. The con-
tribution of the plate is expressed as an effective width which can be
used to determine the area of an equivalent stringer having a total
elongation under load the same as that of the stringer in the combined
structure. The method of least work (page 156, reference 6) is used to
determine the state of stress in the plate and stringer. The stringer
stresses can then be Integrated over the length of the stringer to
determine the total elongation.

The stress distribution in the plate can be defined in terms of a
stress function ¢ as follows:

2
o’x = .a_Q T
dy?
a%
Oy = g)? > . (B1)
_ e
Txy = "X oy )

The stresses given by equations (Bl) automatically satisfy equi-
librium conditions; the differential equation which the stress function
must satisfy to fulfill compatibility is

a_h%+9 all@ +ahi=0
xt By
A solution of equation (B2)' is given by

P = : En + Cn(ll + ?ﬂ e-gzz s:i.n‘g-lE | (B3)
o=

(B2)
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- In this expression Bn and Cn are arbitrary constants which are
determined from the condition that the true stress distribution is that
which makeg the strain energy of the combined structure a minimum. If
" the plate width is assumed infinite, the stress function given by equa-
tion (B3) satisfies the boundary conditions that all stresses vanish
et y=o and that ox =0 when x =0 or 1. The stress function
does not provide zero shear stress along the edges X =0 and 1
therefore, in effect the plate has ribs along these edges. This viola-
tion of, boundery conditions is considered unimportent since, in the
actual structure, these edges are restrained by the spar flanges. The
strain energy in the plate is given by the expression

o 1 A
t
Uy = 2]; L EETP' “x2 + Uy2 - 2“_“x°'y +2(1 + p)-rxyﬂdy ax (BY4)

Meking substitutions from equations (Bl) and (B3) and integrating
this expression gives

3t ¥ _afBp  ByC cn2>
“Pfe";ﬁ(ch*mpn*% (83)
since
GP=21+p.

Consideration of equilibrium of plate and stringer gives the
following expresslion for the load in the stringer -

PS=P°—(P0-P1)%-2tL oy dy (B6)

The strain energy in the stringer cen be written as

1 P82
Ug =L SARg dx (BT7)

which, upon substitution from equation (B6) and integration, becomes

) 7212 2t
Ug = EA—E;(P°2 + PoPy + P72) + iE, 1 E 2B,2 + TEC 3 1 [(:-l)nPl - P;[Bn
n=

n
n=

(B8)
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The total strain energy of the system is then
U=Up +Usg , (B9)
If the total strain energy (equation (B9)) is minimized with respect

to Bn and Cn, two equations are obtained which yield the following
expressions for the constants

w12|p, - (-1)n1>£|

Bn = (B10a)
E 41t
Ax3p2(1 + p)(3 - u)|n=2 +
Ep An(l +p)(3 -p)
E
Cn = -Bn(
n = -Ba(ig),
- B> 5#) (100)
The total extension of the stringer can now be determined as
tp
s
u = _— dx
o AEsg
1 2t & I: n
= EAT;(PO + Py) - i n§=l 1-(-1) [B, (B11)
The effective area of the equivalent stringer is defined as
Ae = A + Atg ” (B12)
where
E
= t—2
te = tEs

The elongstion of the equivalent stringer 1s then

1 Pg
OAeES

_ 1 (B + Py
= 55, (A_—+ e (B13)

dax

=}
|
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Setting equation (BLl) equal to equation (Bl3) gives the following
equation for the effective width

‘ %= (Zﬁe')(zf{e)Ea(l + 23(3 - uﬂ e (BLk)

where

(]

1

=1,3,5 Lte
; I‘EE““ (A):t(l+u)13 -;J:I

Note that the applied loads do not appear in the expression for
effective width., -

N =

A similar result can be obtained from an anglysis in which the
plate is assumed to be infinitely stiff in the transverse (y) direction.
In that case, the differential equation of the plate is

é%u_ ’"‘ Pfu_ g (B15)

<P

The solution of equation (B15) which satisfies a1l the boundary condi-
tions for a plate of width h is

oo cosh\’ P—’t—(h y) .

u= sin

. — 1
n—l cosh ’ n:rh

With the stresses defined in terms of u displacements as follows

=‘EP %
Ty = Gp B (m27)

and the strain energy of the plate given by
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h ni 2 2
t(O9% T
U=2f'f —(——+-5L)aydx (B18)
P oJYo 2¥p O
The procedure previously followed can be used to obtain
A A N
7" (Zt ) (B19)
e/ ANaJL +u _ o
1te/ 81 2

where

- tm@a@.
" n——;5 1t —— ;
-] N (-—Ag)-}-t-ﬁ ta'.nh\](g); MTh]

Examination of equation (Bl9) reveals that the effect of finite
plate width h 1is negligible whenever h 21 since the hyperbolic
tangent ‘terms very nearly approach a value of 1. In this case only a
small difference is found between equations (Bl4) and (B19).

The two expressions for effective width (equations (Bl4) and (B19))
have been evaluated for a range of values of A/lte when p = L

3
and h =, The results are plotted in figure 18.

The results of the preceding analysis can be presented in a more

convenient form for the analysis of a swept wing. The moment of inertia
of the bulkhead alone can be related to the area of a substitute stringer
as Tollows:

I= %Acz (B20)

and the effective moment of inertia is

Te = T + Zhtec?

I(1 + v) (B21)
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where
- (3)65)

- 30T

Figure 8 is a plot of v as a function of celte/I, the results of equa-
tion (Bl4) being used in the solution.

<
|
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APPERDIX C

NUMERICAL EXAMPLE

Description of Speclimen

The application of the method to an actual structure is illustrated
by an analysis of the untapered, 45° swept box beam of references 1
and 2. Its construction details and principal dimensions are shown in
figure 9. The outer and carry-through sections are of doubly-
symmetrical cross section and aere divided into five and three bays,
respectively, by internal bulkheads placed perpendicular to the spars.
It is important to note that the actual structure contains a short
bulkhead (bulkheed T7) within the triangular section and that its presence
is ignored in the analysis because the method of analysis assumes a tri-
angular section with no internal bulkheads. Figure 10 is a photograph
of the specimen under test and illustrates the manner in which it was
supported at the four cormers of the carry-through section. In the
analysis which follows these supports are assumed to be rigid.

The dimensions of the three sections of the idealized structure
are summarized in table II and illustrated in figures 19 and 20. The
dimensions of the two bulkheads and that portion of the front spar
bordering the triangular section are given in teble III together with
their calculated stiffness factors. The material of the specimen was
245-T3 aluminum alloy except for the steel bulkheads. These materials
are assumed to possess the following elastic properties:

E G

Material (psi) (psi)
2hs-T3 10.5 X 106 1.0 x 100
Steel 29.0 X 108 11.0 x 108

Loeding Conditions

The box beam is analyzed under four different loading conditions,
symmetrical and antisymmetrical bending and torsion corresponding to
the test data of references 1 and 2. These loads are applied to the
loading bulkhead at the tip of the outer section; the bending being-.
produced by a vertical shearing force of 2,500 pounds; the torsion by a

B e ol e T ) ———
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pure couple of 43,420 inch-pounds. For -convenience, these loadings
are hereinafter referred to by number as follows:

Loading 1: Symmetfical tip bending load of 2500 pounds
Loading 2: Antisymmetrical tip bending load of.2500 pounds
Loading 3: Symmetrical tip torque load of 43,420 inch-pounds

Loading 4: Antisymmetrical tip torque load of 43,420 inch-pounds

Analysis of the Outer Section:

Method of analysis.- The dimensions of the idealized outer section
ere given in table II and illustrated in figure 19 which also shows the
notation that will be employed. The stress and distortion distributions
for the idealized structure will be determined as well as the stiffness
factors required for the analysis of the complete structure.

Since the outer section is a cantilever box beam on a flexible
root, the stresses and distortions can be obtained from the superposition
of the following solutions:

(a) Outer section with a rigid root and a tip bending load of
2500 pounds

(b) Outer section with a rigid root and a tip torque load of’
43,420 inch-pounds

(c) Outer section with the root warped
(d) Outer section displaced as a rigid body

A simplification of the analysis and the use of elementary theory
in some instances are possible because of the constant doubly-
symmetrical cross section. Further simplification is mede by assuming
that all bulkheads are rigid in their own plane, although this assump-
tion leads to a slight violation of continuity because bulkhead 6 is
assumed flexible in the analysis of the triangular section. Figure 21
shows the two types of force groups which appear in this analysis.
Shear flows are shown in addition to the concentrated flange forces.
The sign convention used.with the warping group is that of reference T.

Bending of a cantilever.- The outer section is considered to be
rigidly built in at the root and loaded by a central vertical shearing
force of 2500 pounds at the tip as shown in figure 22(a). The internsl
forces and stresses are those of the F-group and can be expressed as
follows: -
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F = 5¢ = pe(E - %) = 178.57(89 - x) (c1)
0B = of = 2% = ZE(L - x) = 97.01(89 - x) (c2)
ch = qcF'= 2—Vc- = 178.57 pounds per inch (c3)
B F o ifé - 2289 psi (ck)

The heam bends without twisting and the deflection of the center line
consists of two components, that due to flexure and that due to shear
deformstion of the webs. Thus,

WwB o= w4+ T : (c5)

where
WO = gE‘lI-(3L - x)x2 = 0.43994(267 - x)x° (C6)
wT = §§%E;x = 0.0005723x . , (CT)

The distribution of stress and deflection is given in table IV(a).

Torsion of a cantilever.- The outer section is considered to be
rigidly built in at the root and loaded by & pure couple of 43,420 inch-
pounds et the tip as shown in figure 22(b). The internal forces and
stresses are those of the X-group plus the shear stresses required to
equilibrate the torque and cen be expressed as follows:

T

T _ ZXn
=R . (c8)
(rt) T p Tn X _Tn , Xp~ - Xn-1" (c9)
T™e,m T %,n 2be * 9,n T Bbc * 2ap 9
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T T
T T X - Xna
T _ P _n_ X_on
(Tt)b,n = %, = 3pc T W,n T oo T 2an (c10)

The X-forces are statically indeterminate; however, they can be calcu-
lated by means of the following recurrence relation (reference T) which
establishes continuity between bays:

; T T T
¥y - (Pn + Pn+l)xn + fna¥n” = -3pTn + dpa1Tpa  (C11)

where

.
|

LE-g)
~ BGbc\tp ~ Te
- in which A 1is the effective area for warping stress.

Once the X-forces are known, the twist of one bulkhead relative to
the next can be determined as follows (reference 8):

AenT (T_a.) + Aenx
n

GJ
- (GT_g)n - u;n(an - Xp17) (c12)
where .
J = 2b2c2
b, c
tp tc

For the dimensions and stiffness parameters given in table II, the
recurrence relation yields the following set of simultaneous equations
for the X-forces:
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~3.57806  0.57511
0.57511 -3.57806

0 0.57511
0 0
0 0

L

The solutions are

43
.

0 0 o| [%T] [ o 7]
0.57511 Lo- o| |xs5T 0
-4.15317 1.75718 ol [xT|=| o
1175718 -4.72828 1.75718 | |[X5T 0

0 1L.T5TI8 -2.36kk | _}(65 3296921

X' = -10.573

+ x3T = -65.719

0T = -398.673

X570 = ~920.751

XgT = -2078.917

The distribution of stress and twist is given in table IV(D).

Werping of the root.- The root of the outer section is warped the

amount shown in figure 22(c).

used in the preceding section.

as follows:

The solutions of the system

The internal forces and stresses are
those of the X-group vhich can be determined by the method of analysis

The only change is in the boundary
conditions with the warping of the root being related to the X-forces

f6X5W - p6X6w = f;(¢2 - ¢3) . (c13)

X2W

X3

th

of equations are then

-5612(g2 - ¢3)
-34915 (¢ - 95) .
-211615 (¢2 - ¢3) ,
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X5" = -488733(g, - #3)
X" = -1103484(d, - ¢3)

Teble IV(c) summerizes the stress end twist distributions for
(¢2 - #3) =1 x 1076, '

Rigid-body displacements.- The outer section is given the rigid-
body displacements shown in figures 22(d) and 22(e). These displace-
ments do not affect the stress distribution but give the outer section
a twist about its center line

R = %? (c1k)

Plus a deflection of that center line

R = Ty + Hgo + g3)x (c15)

Superposition of solutions.- The complete stress and distortion
distributions can be obtained by combining components from each of the
preceding analyses. Since the basic expressions are the same for both
symmetrical and antisymmetrical loads, the stresses and distortions at
any cross section can be written as follows:

Loadings 1 and 2 Loadings 3 and 4

op oB 4 oV _ I "

OR oB - oW ~oT - oW

T -'ch - TCW -TCT - TCW _

T r® - S A N (1
b “Tp" STyt = Ty

6 &R + ¥ & + 0% + &

W w4 B wh )

The sign convention for the stresses is that shown for the internal
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forces of the outer section in figure 2. Positive deflections and twist
move the front spar downward. Simllar expressions cen be written for
the forces at the root cross section from which the stiffness factors
given in table V can be determined by inspection. These are the stiff-
ness factors required for the analysis of the complete structure.

Analysis of the Carry-Through Section

Method of analysis.-~ The dimensions of the idealized carry-through
section are given in table II ard illustrated in figure 20, which also
shows the notation employed. The stress distribution is determined
along with the stiffness factors required for the analysis of the
complete structure.

Since the supports at the four corners of the carry-through section
are assumed to be rigid (w1 =W3 = O), the stiffness factors associated
with the deflection and twist of the ends in the plane of the end cross
sections will not be required. The stresses can therefore be obtained
from the superposition of the following solutions:

(a) Carry-through section with the end cross sections rotated out
of their original planes

(b) Carry-through section with the end cross sections warped out
of thelr originsl planes

The doubly-symmetrical cross section permits considersble simpli-
fication of the analysis since in such cases the end rotation is a
result of the application of F-forces only and the warping is the result
of the application of X-forces only (fig. 21); however, a few complica-
tions are introduced because the splices in the center bay make it
stiffer than the other two bays. The bulkheads are assumed rigid in
their own plene despite the fact that in the analysis of the adjacent
triangular section, bulkhead 8 is assumed to be flexible.

Since the analysis depends upon whether the end distortions are
symetrical or entisymmetricel, the ratio. R 1s introduced in order
that general equations, applicable to both types of loading, can be
written. Then:

R

+l when the loeding is symmetrical

R

-1 when the loading is entisymmetrical

Rotation of the ends.- The ends of the carry-through section are
rotated, symmetrically or antisymmetrically by the amount shown in
figure 23(a). Equilibrium of internsl forces requires that:

fm e tm e me— e o mn - v - et e e - —~ » —— v — e



Fiog - Fq Fq - Fg
F_ F_710-"9 _ 7978
%,9 © %,10 T g )

The forces can now be related to the distortions by means of equations (Al3) and (All) as
follows:

(c1T)

Py = fa - 2(-;;——1)(% + Fg) (c28)
To - T 2 ‘
g - 1o = fgaig - Zﬁ% - 2(%)10(21"8 + Fyo) (c19)
) . Fg - F a2
vg - Wg = figag - 2‘(%&33 (@“)9 (Fg + 2¥g) (20}
and since
Wg =Wy =0 . (ca1)

R o 110 i Y10 _ _¢110 - _qu
- Fg Fa W9 99 ) . QB

(ce2)

gg = -]-'-(vl +¥3 sin A + @3 cos A) (023)‘

the following rela.tionahips cen be onta:l.nea.
I:lo ) (l R)aﬂ ﬂfl + 11,’3 sin A + ¢3 cosB A)

Fg = m—
1_R|_,-\ ) n _| fea) (2+R)310 /ca\l— . _(1'3)2-_]

2Ege NI VOVM
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Fg = Fg 1 ' (c25)

1+ 2 (1 - R)
a10

F F 1-R ‘
QC,9 = qc’lo = F8 o + 1 - R)a9 (c26)

The stress distiibution corresponding to end rotations of the amount
V1 +V¥3 sinA +¥3cosA =1Xx10° is glven in teble VI(a), in which

2
o = (E%-)n (cer)

F
B 4
Ten = (f)n (c28)

Warping of the ends.- The ends of the carry-through section are
warped, symmetrically or antisymmetrically, by the amount shown in
figure 23(b). Then, since -

X0 X3 Wy ¥y

R = = = = - c2
"% - Xg Vo = V5 (c29)
and
Vg = %("’1 - 11;3 sin A - ¢3 cos A) (c30)

the method of reference 7 can be used to obtain the following equations
for the warping forces:

Pg¥g - fgXg + JoT = E(xyl -¥3 sinA - ¢3 cos A) (c31)

~£oXg + (p9 * 24 \- RflO)X9 + (,jlo - :]9)T =0 (c32)

The torque in the carry-through section is statically indeterminate for
antisymmetrical loadings but can be determined from the condition thet
one end does not twist relative to the other because of the rigid
supports, that is:

A6g + A1 + AB11 = O (c33)
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which can be written as follows by use of the equations of reference 8:

a

B(1 - R)IgXg - H(1 - R)(Jg - J10)%o + 2(%—)9 + (@)I;I =0 (c3%)
T

The stiffness parameters f, Jj, p, and -g—J- have been previously
defined in the section "Analysis of the Outer Section" of this appendix
and their mumericel values for the carry-through section are listed in
table II. These values can be used to obtain the following sets of

simultaneous equations and solutions:

Symmetrical loads:

3.349163 -2.8T4949 0.0797693 1.75(4r1 -¥3 sinA - ¢3 ccssA)
2.874949 3.727325 -.0388418 = ) 0
o] o .0336914|T : 0

Xg = 151;6392('&1 - \lf3 sin A - ¢3 cos A)
X9

T=0

1192759 ("lf]_ - V3 sin A - P3 cos A)

Antisymmetrical loaés:

[ 3.349163 -2.874949 0.0797693 Xg_ 1.75 (\l:l - ¥3 sin A - §3 cos A)

-2.87494k9 T7.096181 -.03884L Xg| = 0

.638154 -.31073% .0336914 [ T | 0

Xg = 1509857(¥; - ¥3 sin A - @3 cos A)

%9

T

479367 (¥, - ¥3 sin A - ¢ cos A)

—211-177266 (ﬂrl - ¥3 sin A - ¢3 cos A)

The stress distribution corresponding to end warpings of
(¥ - ¥3 stn A - g5 cos A) =1 x 10 is given in table VI(b), in which
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W _ (X '
Opn = (K)n ‘ (c35)
Ww_ L (T Xy - Xn-l)
Te,n © tc’n\2bc T 2ap (c36)
W 1 (T ¥ -Xgg
Tb,n < tp,n\2bc " 2an (c37)

Superposition of solutions.- The complete stress distribution can
be obtained by combining the components from each of the preceding
anslyses. The basic expressions are the same for all types of loading;
thus, the stresses on any cross section can be written as follows:

\
ap = UB + UW
OR = O'B - UW
Tf = -TcB - TCW r (C38)
Tr=Te - T¢
W
T.b = -T.b

The sign convention for the stresses is thaet shown for the internal
forces of the carry-through section in figure 2. Similar expressions
can be written for the end forces fram which the stiffness factors given
in table VII can be determined by inspection. These are the stiffness
factors required for the anslysis of the complete structure.

Stiffness Factors of the Beams

The dimensions and stiffness factors of the two bulkheads and the
portion of the front spar which bound the triangular section are given
in table III.

Since the nature of the normal -stress distribution in the
triangular-section cover influences the effective moment of inertia of
the front spar, two values are given. They were determined as follows:

For bending stresses, Ie was taken as one-half the moment of
inertia of the doubly-symmetrical outer section.

P e - e e e e e e i g e g e e — — —————
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For warping stresses, Ie was determined from the effective
warping area of the outer section; thus,

L

LI = %Ac2 = %(0.863)(7)2 = 21.1 inches (c39)

The effective moment of inertia of the bulkheeds includes a con-
tribution from the cover sheet of the box beem as determined from fig-
ure 8. The equivalent thickness of the aluminum-alloy sheet acting
with the steel bulkhead is given by the relationship

Egheet (10 .5

te = t=—2828% _ 4 050
e = B ihesd 29.0

55°5) = 0-0181 inches (cko)

Triangular Cover Sheet

The shear stiffness of the trianguler cover sheet, which frequently
appears in the general equations, has the following value*

GZC = 2(4'x 106)(0.050)(T) = 700,000 pounds (ch1)

The shear stiffness per unit width also appears and is

Gtc

T = 3—0(700 000) = 23,333 pounds per inch (ck2)

The Systems of Equations and Their Solutions

Sufficient data have now been obtained to permit evaluation of the
coefficients of the matrix (teble I); however, since the supports have
been assumed rigid (w1 w3 = 0), it will be unnecessary to evaluate
the coefficients of wi/b and w3/b Furthermore, there are only seven
unknown Joint displacements, which require only seven equations. The
logicel equations to eliminate are equations (3) and (9) since they
contain the support reactions V) and V3, which are statically indeter-
minate for the antisymmetrical loading conditions., The Joint force Vo
is zero because the loads are applied at the tips only.

A different set of equations will be required for each loading
condition since the structure responds differently in each case. Thus,
the stiffness factors for the carry-through section are different for
symmetrical and antisymmetricel loads and the effective moment of inertia
of the front spar and the loading terms are different for bending and
torsion. The calculated coefficients are given in matrix form in
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table VIII. Each block in the table has space for four values, one for
each loading condition. ' If a single values is given, that coefficient

is good for all four loading conditions; when two values are listed, the
upper one is for loadings 1 and 2 whereas the lower one is for loadings 3
and 4; and if four values appesr, they are for loadings 1, 2, 3, and 4,
respectively, when reading from top to bottom.

Throughout the calculetions, a large number of significant figures
have been carried, more than are justified by the accuracy of the initial
data; however, the extrs figures were carried in order to obtain an
accurate check on the numerical work when the calculated internal forces
are substituted into the original nine equilibrium equations. The solu-
tion of the equations and the calculation of internal forces frequently
involve the differences of large numbers and the final results are apt
to contain several significant figures less than the initial coefficients.

The solution of the systems of equations yields the joint displace-
ments given in table IX. Many methods are avallable for the solution
of simultaneous linear equations; however, the method of reference 9 is
recommended because of its many practical advantages.

Calculation of Stresses

The flange forces and shear flows in and around the triangular
section can be obtained from the joint displacements by substituting
them back into the force-displacement relationships, equations (13)
to (35). The shear stress is given by the shear flow divided by the
sheet thickness; thus,

T=3 (ch3)

The flange stress in the front spar and bulkheads is obtained from the
flange force and the effective moment of inertis as follows:

2
o= 55 (clk)

The flange stresses in the outer and carry-through sections must be
determined by summing up the various component stresses, equations (C16)
and (C38), since different effective areas are associated with the

bending and warping stresses. The results of these calculations are
given in table X. ' .

The stress distribution in the outer and carry-through sections can
be obtained as described in the analysis of these sections, with joint
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displacements substituted where necessary. The results are given in
tables XI and XIT, respectively.

Figure 12 illustrates the distribution of flange normal stresses
and spar shear stresses as calculated in this example and compares them
with the experimental data of references 1 arnd 2. The distribution of
normal stress in the cover at three selected stations is similarly
illustrated in figure 13.

Calculation of Distortions

The distortions of the outer section can be calculated by adding
up a number of component distortions as provided in equations (Cl6).
The deflections of the individual spars can be obtained from the
deflection and twist of the box beam as follows:

(ck5)

n
E
]

YR

The twist of the structure in a plane parallel to the flight path con-
tains a component of the twist perpendicular to the spars and a
component of the rate of change of deflection, but it is most easily
calculated from the deflections of the individual spars.

The celculated results are listed in table XIII and are graphically
compared with the experimental data of references 1 and 2 in figure 11.



NACA TN 2232 | . 53

REFERENCES

Zender, George, and Libove, Charles: ‘Stress and Distortion
Measurements in a 45° Swept Box Beam Subjected to Bending and to
Torsion. NACA TN 1525, 1948.

Zender, George W., and Heldenfels, Richard R.: Stress and Distortion
Measurements in a 45° Swept Box Beam Subjected to Antisymmetrical
Bending and Torsion. NACA TN 2054, 1950.

Levy, Samuel: Computation of Influence Coefficients for Aircraft
Structures with Discontinulties and Sweepback. Jour. Aero. Sci.
vol. 14, no. 10, Oct. 1947, pp. 54T-560.

Kuhn, Paul: A Procedure for the Shear-Lag Analysis of Box Beams.
NACA ARR, Jan. 1943.

Kuhn, Paul: Stress Analysis of Beams with Shear Deformation of the
Flanges. NACA Rep. 608, 1937.

Timoshenko, S.: Theory of Flasticity. First ed., McGraw-Hill Book
Co- , Incl , 193J+.

Kuhn, Paul: A Method of Calculating Bending Stresses Due to Torsion.
NACA ARR, Dec. 19k2.

Kuhn, Paul: Deformation Analysis of Wing Structures. NACA TN 1361,
191,&7 .

Crout, Prescott D.: A Short Method for Evaluating Determinants and
Solving Systems of Linear Equetions with Real or Complex Coeffi-
cients. Trans. ATEE, vol. 60, 1941, pp. 1235-1240. (Abridged
as Marchant Methods MM-182, Sept. 1941, Marchant Calculating
Machine Co., Oakland, Calif.)




54

NACA TN 2232

TABLE I.- COEFFICIENTS (a'i,j) OF THE GENERAL MATRIX

DEFINING THE JOINT DISPLACEMENTS

Coefficient Formula
a1 l___(-k15 + kl6) - (kll + kl2il sec A + (o + B)yp cos A
851 ~(a + B)yp cos A
a31 (kg + kpg) - (ko7 + kpg)
ayy ~B1p cos A - %:- Byp cos A
8.51 -gtl;—c- cos A
Gtc
agy (@ - B)yp cos A+ = (512.+ 523) sin A
Gt
8-71 (k23 + ke)_'_)513 sec A - E—b‘ci '613 cos 2A .
8.81 (ku + k12) sec A + 'G%:' sin A )
891 —El3(k23 + k2,-|-) + (k27 + kzeﬂ b sec A +
%3(613 cos 2A -~ 623)
815 (a0 + 3)23 tan A )
80 (¢ + B)y3 cot A
a3o Y .
ajo %:- 812 cot A '
ap3 Gtc
asp '8—2-5 + -é.b— cot A
ag2 (@ - B)o3 tan A - %(612 + €23)
a7o (o + B)23 + g:‘%c 813 cos 2A csc A
ago (@ + B)pg tan A - %2
ago (o - B)23 sec A ~ EZ—C-(G13 cos 2A - 523) csc A

~RKA
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TABLE I.- COEFFICIENTS (a'ij) OF THE GENERAL MATRIX

-DEFINING THE JOINT DISPLACEMENTS - Continued

Coefficient Formula
®13 Zk15 - yg) - (b - klaﬂ tan A - (@ + B)pg tan A
853 ~(o + 3)13 cot A - (a + 5)23 cot A

233 3k19 - kpo) - (ko - keS)] sin A

8.1|_3 0
Bo3
853 853
863 (a0 - 3)23 ten A
&73 (ko3 - k21813 tan A - a3 - (a + By
ags (kll - k12) tan A + (o + B)ys ten A
293 'E13(k23 - kop) + (ko7 - kesﬂb tan A -
(¢ - B)13 cos A - (o - 5)23 sec A
8 (o + B)12 sin A
ap) ~(a + B)l2 si.n A - (a + B)i3 csc A
8.3)4_ 0
- Gtc
all -B1o sinA+2TSJ_2 cos A cot A
a5l ‘ -g%‘i cos A cot A
agh (¢ - B)1o sin A - %—c-( €10 + 623) cos A
&)y -313 sec A + g—%‘—: 813 cos 2A cot A
ag), -% cos A
Gtc
agl, (o - B3 - T(€l3 cos 2A - 623) cot A

TN Tttt e e e e e — - - y ———
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TABLE I.- COEFFICIENTS (a;j) OF THE GENERAL MATRIX
DEFINING THE JOINT DISPLACEMENTS - Continued
Coefficient Formula
a5 ~(a + B)1o
85 (e + B)1p
%35 ° ’
ans k3 + ajp + %E 810
255 7+
265 -(1 - eo3)kqd tan A + (a - B)12 - -G%(ela + €p3) tan A |
ars -k3 tan A + gﬁ—c- 6i3' cos 2A sec A
- ag5 kg - 2 tan A
295 (l - 523)1:71: sec A - %9(613 cos 2A - 623) sec A
216 (k25 - k) - (ka1 - k1)
806 (@ + B)y3
a3g (k19 - kzo)‘ cos A - (k27 - k28) cos A'
al6 k3 - 22€ B1p | .
as6 | k-5
866 (1 - epg)ieqb ten A + B (egp + €p3) tan A
a6 k3 ten A + 813(kp3 - kpy) + a3 tan A -
%2513 cos 2A sec A o ‘
agg ky + (k3 - ko) + EE tan A |
896 - - 6'23)1;7‘0 sec A - Elj(k23'- ko) + (koy - kesﬂb+
(a - B)l3 sin A + -Gz—c(el3 cos 2A - 623) s‘ec A

AR
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TABLE I.- COEFFICIENTS (243j) OF THE GENERAL MATRIX

DEFINING THE JOINT DISPLACEMENTS - Continued

Coefficient ) Formula,
8.17 Ekl-{ + le) - (k13 + kllﬂb sec A
8o Y
237 Ek21 + Xpp) - (lipg + k305__|b
8o (a0 - B)12 cot A
a.57 0
a.'67 2(a - 13)12 cot A
a7 (k25 + k‘26) 813'b sec A + (a - B)13
8.87 (kl3 + klj_l_)b gsec A
. 2
897 -E13(k25 + k26) + (k29 + k30) b“sec A +
2(@ - 3)13 cos A
88 0
&38 0
a)g ~(a - B)1p cot A
1

%58 (@ - Blog 557
agg -2(a - B)1p cot A - 2(a - B)23 tan A
*78 °

’ &88 0
agg 2(a - 8)23 sec A
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TABLE I.- COEFFICIENTS (e;4) OF THE GENERAL MATRIX

DEFINING THE JOINT DISPLACEMENTS -~ Concluded.

Coefficlient Formula
a1g (k17 - xg) - (m3 - k3,)| b sec A
aa9 0
39 Bkel - kpp) - (k29 - k3oz|'°
8.)4_9 0
8'59 ((1. - B)a3 532:'5
269 2(a - 5)23 tan A
2g (k25 - k26)813b sec A - (o - B)l3
agg (k13 - klh-)b sec A
299 -[e3(xe5 - Bo6) + (ko9 - k305J pisec A -
2(a - B)l3 cos A - 2(a - 3)23 sec A
210 - (g + k)M
850 (g + ky,) M
a3o -%(V]_ + Vo + V3)+ (k5 + klo)v
ajo M + kT
as0 -kgV ~ kgT .
ago E::v2 + (k5 + e23k8)v + (k6 + 623k9)Elb tan A
a0 (lsgM - kT ) ten A -
a80 klM - k2T
ago E;cl:;v3 + (klo - 62'3k8)v - (k6 + 623k9)ﬂb sec A

. xT .
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TABLE II.- DIMENSIONS AND STIFFNESS PARAMETERS OF IDEALIZED

STRUCTURE 'USED IN THE NUMERICAL EXAMFLE

Outer section

Carry-through section

Them (fig. 19) Triangular (fig. 20)
section
Bays 2, 3 and 4| Bays 5 and 6 Bays 9 and 11 Bey 10
Dimensions
b, in. 30 30 36 | e e
L R T T e ho,1 ho,1
c, in. 7 7 T 7 * T
tp, in. 050 0.050 0.050 0.050 0.0885
te, in. 0.078 0.078 0.078 0.078 0.078
a, in, 22 11 30 9.60 9.76
I, int 90.2 90.2 | —ee-- 120,58 135.15
W ~on lan A DLA n O~ A AZl 1 AAs
Ay BY Al. UV.U03 Va3 - Ve - Loz
gtiffness paremeters
Ky qn. /1D 1.78903 x 10-6| 2.36Mk x 10-6| wuc-- 3.349163 x 20-6| 2.062590 x 10-6
£, in./1b 0.57511 x 10'6 1.75T18 X 10'6 ----- 2.8Thoklg x 10'5 1.684428 x 10'6
J, per 1b 0.075931 X 10'6 0.075931 X 10'6 ----- 0.0797693 X 10'6 0.0409275 x 10'6
a/GJ, per in,~1b |0.0430112 x 10-6 0.0215056 X 107°| ~w=a- 0.0128741 X 10-6 0.0079432 % 106
*Includes an allowsnce for splice plates, W

*®Effective ares for warping stress (A = Af + %ctc + %-btb + %ZAE’)

*¥¥These stiffness perameters ere defined in appendix C.

2L33 NI VOVN
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60 NACA TN 2232
TABLE III.- DIMENSIONS AND STIFFNESS FACTORS
OF THE BEAMS
Beam Front spar 1-2 Bulkhead 2-3 | Bulkhead 1-3
Material 245-T3 gluminum alloy Steel . Steel
Stress - Bending Warping
- Dimensions
1, in. 30 30 29.25 .34
c, in, T T T T
t, in. 0.078 0.078 0.125 0.125
I, mbt | el 6.15 8.01
te, in. | emme=|  emae- 0.0181 0.0181
Clte/I | . —eeem] eeea .21 4.57
L2 N e T 0.60 0.65
Te, in.} 5.1 21.1 9.8k 13.21
Stiffness factors |
®, per 1b | 0.575170 x108| 0.743315x 106| 0.338627x108] 0.332182 %106
@, 1b 3.993615 x10°| 2.400311x 106| &.346797x 106 1.427535x 106
B, 1b 0.51638% x 100 |-0.290336 x 106 | -1.559397 x 106 | -1.780133% 106
8, in. 11.1k498 8.62387L k.295115 k51467
le 0.257002 0.425063 0.706297 0.781584

~T&E
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TABLE IV.- STRESS AND DISTORTION DISTRIBUTION IN OUTER SECTION

(a) When root is rigidly built-in and tip bending load of
2500 pounds is applied

a x e o T CB w° w >

(in.) | (1b) (psi) | (psi) | (in.) (in.) (in.) |
1 88 176 97 | -=--- 0.6098 0.050k4 0.6602
2 |- 66 4107 2231 2289 .3852 .0378 4230
3 4y 8036 4365 2289 .1899 0252 .2151
b 22 11964 6500 2289 .0522 0126 .0648
5 11 13929 1567 2289 .0136 0063 .0199
6 0 15893 | 863k 2289 0 0 0

(v) When root is rigidly built-in and tip torque of
43,420 inch pounds is applied

n oT oL T T Ta/GT AeX oT

(psi) (psi) (psi) (radiens) (radians) | (radians)
1 O | =emme | mmmme | mmmmmmeen | e -0.006840
2 -13 -1328 ~-2063 -0.001868 0.000003 -.004975
3 -76 -134 -2043 -.001868 .000017 -.003124
y -h62 ~1h22 -1916 -.001868 .000101 -.001357
5 -1067 -1630 -1593 -.00093% .000159 -.000582
6 -2409 -2000 -1015 -.000934 .000352 0

(c) When root is warped by amount (¢2 - ¢3) -1x 106 radians
n oW TN TN Y- . oW
(psi) (psi) (psi) (radians) | "(radians)

1 L I T T T U e — 0.335155
2 -0.0065 -0.0016 0.0025 0.001705 .333450
3 -.0kok -.0085 .0133 .008900 »324550
by -.2452 -.0515 .0803 .053668 .270882
5 - -.5663 -.1615 .2519 081167 .186715
6 -1.2787. -.3583 <5589 186715 0

~NAGAS
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NACA TN 2232

TABLE V.- OUTER-SECTION STIFFNESS FACTORS

Stﬁi:zis Loadings 1 and 2 Loadings 3 and 4
kM, 1b 15892.86 . 0
kT, 1b 0 -2078.91

- k3, 1b/radian ~110348% -1103484
kM, 1b 15892.86 0
ksV, 1b/in. -178.5T14 0
kgT, 1b/in. 0 156.0246
k7, 1b/in./radian 27943 27943
kgV, 1b/in. 0 0
kgT, 1b/in. 0 50.7371
k) oV, 1b/in. -178.5T1k 0
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TABLE VI.- STRESS DISTRIBUTICN IN CARRY-THROUGH SECTION

(a) When ends are rotated by the amount
(’i‘l +ﬂf3 sin A+¢3 cos A.) =1X 10'6 radians

(b) When ends are warped by the amount

(\lfl ~¥3 sin A.-¢3 cos 1\_) =1X 10"6 radians

Stress Symmetrical | Antisymmetrical
B
og » Dol 1.3100 0.7303
B
dy s pei 1.3100 0.2460
¢ B, pet 1.188 0.2231
B sl 0 1.61
Tch :* ® LT
v B, pet 0 1.6177
c,20 ’ P )

Stress Symmetrical | Antisymmetrical
og', pei 1.6041 1.5662
W
69_ , psi 1.2373 0.49T2
o9+w,_psi 0.9705 0.3900
W
Tc 9 F] PBi "0-2361 -1.21140
’
T W 1 0 0.1038
c,10 ) B8 )
T'b 9 psl 0.3683 0.2530
2
W ~1.0185
T'b 10 s pei 0 .
2
A
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TABLE VII.- CARRY-THROUGH SEdTION STIFFNESS FACTORS

Stiffness. factor

Loadings 1 and 3

Loadings 2 and 4

ku,

kog,

1b/radian
1b/radian

1b/radian

1b/radian

1b/in./radian
1b/in. /radian
1b/in./radian
1b/in./radian
1b/in./radian

1b/in./radian

3277276
-1546392
3277276
1546392
0

18418

-18418

18418

1827064
-1509857
182706k
1509857
126178
9k691

0
-12651
-126178

9L691L

A




TARNLE VIIT.- SYSTEM OF EQUATIONS FOR EACH LOADING CONDITION

-0,031786 .

0

0,031766
0

0.015893
-0.0020789

0
=0.0000507

-0.003357
0.0057558

Loading 1 | Bymmetrical + ing leoad of 2500 1b

Loading £ Antimm‘brical 'I:-:I.:p bending load of 2500 1b

Loading 3 |Symmetrical tip torgue load of hs,heo in,.-1b

Losding U | Antisymsetrical tip torgue load of 143,420 in.-1b

I_.enﬂ'lrur i

Loading 2 Loadings ) and 2

Loading 3 Loadings 3 end Loedings L to &

Loading I
(s o | sassoss | dmoooo | Sroiema|
5.865603 | 2-TBTHOO | 72'3a0185 | T1.49198k | -2.109975 | -3.092785 | © Y1
5.762485 -5.80T11.k -3.019T1k
-3.169065 o _787kon 5.4 -6.9330k0 4.51.0000 o &u7hoo 0 ¥,
-1.k91984 A B semITErE -5,235959 2.109975 SIS v T2
-0, 545024 0.260050 0 ~0.181257 5.35T1h9 | -1.363534| -3.477231 ¥
0.063013 0.201223 0.347587 | 3.705018 | -1.304707| -2.690647 3
-0.016409 1,035205 0.363038 0,016499 ‘ =0, 004610 0,004610 =1, 375000 ¢
2.935596 5.231885 1.961974 2,556TL3 0.920%18 | -~18.'766850
2, 5.11h2ke 5906194 1.342586 1.652 1,0368L6L| -17.193682( | fo
-0, 1%07596 -7.131'&% 5.6&133
-0.080792 ~T.157 . 5.5881
0.117506 | 2-TBTHOO | Toigi-my | 2.3M7HTT | -1.1034B4 5 611;1;% 0 #3
~0,080792 -7.157806 55,5881
0.94357h 5 124321 | gmg :2

* bt 1 ll'oo =\ - —

2.9 3.481 T.611069 | “O-MMTT | -1.80388h | o3| O b
0.9435Th 6.124321 5,1%0405

0.015893
0.0020789

0.015893
0.0020789

2ETE MI VOVN
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NACA TN 2232

TABLE IX.- JOINT DISPLACEMENTS FOR EACH LOADING CONDITION

Displa ‘nt Loaiing Loa.ging Loag.ing Loa.iing
¥, radiens 0.0003681 | 0.0019304 | -0.0002970 | ~0.0005616
Vo, radians 0.0029693 | 0.00k09k2 | -0.0013392 | ~0.0015269
V3, radians 0.0012872 | 0.0024238 | -0.0006535 | ~0.000841}4
1, radians 0.0005019 | 0.0005217 | -0.0003813 | ~0.0003817
@o, radians 0.0055292 | 0.0066615 | -0.0012307 | ~0.0014186
@3, radians 0.0038611 | 0.0050147 | 0.0001279 | -0.000060k
w1/b, radisns 0 0 0 0
wo/b, radians | 0.0025T16 | 0.0037002 | -0.0011405 | -0.0013282
0 0 0 0

w3-/ b, radians

W
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TAELE X.- CALCULATED LOADS AND STRESSES AROUND THE TRIANGULAR SECTION OF

o S
L0O0 ROl DAJA DML

AT BAYT TRAM TAD
LWL SHAL

TAMITT TAATNTRY N I
LAJALILINT » LVIYUL L LWL

ANTTMTARY

Symmetricel tip bending load of 2500 1b.

Loading 1

Loeding 2 Antisymmetricel tip bending load of 2500 1lb,

Loading 3 Symmetrical tip torque loed of 43,420 in.-1b.

Loading 4 Antisymmetricel tip torque load of 43,420 in.-1b.

Flange Web or cover

Fn On 9n Tn
{(1b) (psi) (1b/1n.) (psi)
Loading Loading Loading Loading

nf 1 2 3 L 1 2 3 L 1 2 3 b 1 2 3 b
1| 8110] 8148|-1005]|-1006| k06| 4426(-116T(-1168] 87.7 86.9( 78.5| 78.5 | 112k | 1114|1007 | 1007
2|1%052|14076! -580| -580| T634| T6MT| -6T73] -673[-132.0| -132.6(118.1[118.1 |-1692 | ~1699 [151L | 151k
3|1773417710| 580 580|210767|810739| 672] 672] 225.2| 224,6|118.1(|118.1( 2887 | 2879|151k | 1514
L| 4689 4656{-1911]-191L| 11675 11593|-%758|-4758| -46.6| -46.0] 88.7| 88.7| -932| -920|17T74h | LTTL
5] 23k2| 2349(-1365(-1365| ~=m==| =m=eal-—a-a ~w=n=|-110.4 | -120.7( 64.3| 64.3 |-2208 | ~-2214 (1287 | 1287
6118197|18164[ -2307{-2306 | 810501 | BLOLEE | &-996|8-995 | -60.3| 592.0{ 1.hEGh.1| -773| T7589| 18 |-1848
7| 80T7| 8110(-2076|-2076 ap a3t|a-s6|2-757| 60.3 bo,1| -1.4] -1.0} 1205 843| 28| -19
8| 922k 9231f 1761| 1761 17107| 17120| 3266| 3266| -60.3|-1222.5| 1.4{158.5| ~T73 |~15673( 18 (2032
Q|-5737| -5764| T10| TI1|-106k0|-10690| 1317| 1319 292.6 311.5| 26.1| 25.7| 2341 | 2u492] 209 | 206
1o(1k052] 1076 ~580( =580| 36501 26528| -6T72l -6T2| 219.6] 219.4]-39.5|-39.5| 1757 1755|-36 | -316
®Tndicates a stress composed of a bending erd warping component. W

2tce NI VOVN
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NACA TN 2232

TABLE XT.~ CALCULATED STRESS DISTRIBUTION IN THE
OUTER SECTION OF THE SWEPT BOX BEAM FOR

" EACH LOADING CONDITION

T — - e - v
L Cre el

FLANGES
oF OR
(psi) (psi)
n Loading Loeding
1 2 3 4 1 2 3 4
6 | 6501 ] 6528 | -6T2 | -6T2 | 10767 10ThO | 6T2 | 6T2
5 | 6622 | 6634 | -298 | -298 8512 8500 | 298 | 298
y 16091 6096 | -129 | -129 6909 6904 | 129 | 129 -
3 | 4298 | 4298 ~21 21 432 4430 21 21
2 | 2220 | 2220 -4 =4 2242 2240 y 4
WEBS
Tf Tr
(psi) (psi)
a Loading Loading
1 2 3 4 1 2 3 4
6 }-1691 | -1699 | 1513 | 1513 | 2887 | 2879 | 1513 | 1513
5 |-2020 | ~2023 | 111 | 1411 | 2558 | 2555 | 111 | 111
4 |-2203 | <2204 1352 | 1352 | 2375 | 2374 | 1352 | 1352
3 |-2275 | ~2275 1329 | 1329 | 2303 | 2303 | 1329 | 1329
2 |-2286 | ~2286 | 1327 | 1327 | 2292 | 2292 | 1327 | 1327
COVERS
b
(psi)
n Loading
1 2 3 iy
6 | 932 | -920 | 1774 | 1774
5 | -%20 | -3 | 1935 | 1935
4 | -13% | -132 2025 2025
3 -22 22 | 2061 | 2061
2 | 4| x| 2066 | 2066 | ~NEAS




NACA TN 2232

TABLE XII.- CALCULATED STRESS DISTRIBUTION IN THE

CARRY-THROUGH SECTION OF THE SWEPT BOX BEAM

FOR EACH LOADING CONDITION

69

FLANGES
OF OR
(psi) (psi)
n Loading Loading
1 2 3 4 1 2 3 L
8 2 36 | =756 | ~757 | 10500 | 10466 | -996 | -995
9- | 1202 | 112 | -78% | -257 | 9300 | 342k | -968 | -333
9+ | 1587 | 305 | -Te2 | -238 7939 2903 | -866 | -298
WEBS
T £ T =
(psi) (psi)
n Loading Loa.ciing
1 2 3 4 1 2 3 4
9 | -T73 7589 | 18 | -1848 | -773 | -15673 | 18 | 2032
10 0 { 11977 0 | -1948 0| -11284% 0 1932
COVERS
o
(psi)
n Loading
1 2 3 4
9 | 1205 843 | ~28 | -19
\ 10 0 | -3391 ol 717

st
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TABLE ZTII.~ CALCULATED DEFLECTIONS AND ROTATIORS OF THE OUTER SECTION OF

THE SWEPT BOX BEAM FCR EACH LOADING CONDITION

Loading 1 Eymwetrical tip bending load of 2500 1b

Loading 2 Antisymmetricsl tip bending load of 2500 1b
Loading 3 Symmetrical tip torque load of 43,420 in..1b
Loading Ik  Antisymmetrical tip torque load of 43,420 in.-1b

Deflection® RotationP
(1n.) (radlans)
i
da o gl o B
Loading Loeding Logding Losding
1 2 3 4 o1 2 3 b 1 2 3 L 1 2 3 L
0 .o77|0.110)-0.03%|-0,040[0 [V [V} 0 0.00257]0, 00370 -0,0011%]-0.00133j 0 0 0 0
5(11] .153( .200| -.053| ~.06L] .067! .080| .006] .003| .00268| .00LOL| ~.00198| -.00218|-cenmae| mommmen] mmccace [amcoaan
Y22 ,252] .311| -.072| -.082] .161| .187! .o1l]| .o10| .00302] .00M15| -,00287) -.00305 - - - -
3l J307| 591 -.112| -.126] .hak| 464 .029] .021| .00311| .o0h23| -.00kTL| -.00LB9|-.00556 -.00557-00206-00206
2166| .818 .928| -.152| -.170| .T23| .800| .O45| .033| .00313| .00ke5| -.00657| -.00676|-.00T%L| -.00752} ~.00336 |-.00336
3.88|:L.159 1.293| -.192| -.215|1.065|1.166] .061| .04%| .00313 .ooh25_ -.0084k| -.00862(-,008680] -.00862|-.00468 |-.00458

8poaitive deflection is downward.
Ppositive retation is front spar dowmward.

oL.
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NACA TN 2232 11

/Joint 2

' \
\ Triongular >

Carry- AN
\_ through \s\ection d

section

/Fl_'ont spar
/

7 Ve
_Outer se/ction

7/

N\ O\
\ ) /
—————— iiiiiiiii.-.~.-~‘-----~j//
_ L / Joint 3 .

. Rear spar —
- Bulkhead .
_ —

Figure l.- Idealized sweptback box beam.

Figure 2.- Exploded view of idealized structure showing internal forces
on each component around the triangular section.
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Joint 3
Figure 3.- Free-body disgram showing forces at the joints.
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Figure U4.- Positive directions of joint displacements.
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(a) Loads.
7
| Qriqgingl position {— - -X

- \Dlspluced position

: . -

(c) Differential element.

Figure' 5.- Loading and distortions of beam.
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Bending stresses

Warping stresses

(a) Assumed stress distributions in actusl structure.

e X
AF *AF

R e
B X

RoAp _—

B8 X=0pAg=ORAR

k=0 Aq

AR

(b) Equivalent flange forces in idealized structure.

Figure 6.- Assumed distributions of stresses and forces in actual and
idealized structures.
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A'\[L-L ° ;J|/Af
SR | B
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Afh%c# | é}l f?z Jﬁfs J,AQ{*éctf

(b) Equivalent cover.
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(c) Idealized cross section.

Figure T.- Relationship between actual and ideslized cross sections.
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Figure 8.- Chart for determining the effective moment of inertia of
‘bulkheads. Ig = I(1 + V).
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Qob ™
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Sheet splice

/ /Flonge splice

oo
45

Stringer splice

(4
4

F'

33

13 spaces at 226
JJ‘_IJJJ.IJ.IJ.I.I
L os0 '

1
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Section A-A N

@
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Figure 9.- Details of sweptback box beam used in tests and analyzed in

illustrative example.

Figure 10.- Antisymmetrical bending test setup of sweptback box beam.

T e P mr e ——
N . o .

L-5758L




[




NACA TN 2232 . 79

‘ Positive rotation

Positive deflection

2.5 kips
o i o
£ 008 L
- o
S 2 5
= o Parallel to
§ 4 : 2. 004t flight direction
5 §
o =
X,in.
.8 2 ’
1.2
-004 Perpendicular to spars

(a) Symmetrical tip bending load.
. S Experimental (ref. I,2)

Theory without shear lag
-——- Theory with shear lag

Positive rotation

Positive deflection
——2.5 kips —

00 . o
.008
L @ Paralle! to
¢ 4 S flight direction
= b 004
[ Y
K] -
- c
g8 S X,in.
5 5 0 40 _ _ €0
o S
[ 4

o
[}
=)
o)
H

——r—1
Perpendicular to spars

LI

L&

(b) Antisymmetrical tip bending load.

Figure 1ll.- Experimental and theoretical deflections and rotations of
sweptback box beam.
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Deflection, in.

~~43.42in-kips~

o
o
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Rotation, radians

‘NACA TN 2232 -

ositive rotation

Positive dgflectlon

Parallel to
flight direction

w‘ 0
Rear spar’ 0

A
N

Deflection, in.

80

(c) Symmetrical tip torque load.

\ - ol
- / 4342 in: ki;:s
- / 008}
Front spar / g B
I . s [
o
= .004}-
I3 L
o
X, in, S >
40"’ 80 é 4
'“%’sh %o
| Rear spar 2

Perpendicular

2 Experimental (ref.1,2)
— Theory without shear lag
Theory with shear lag

ositive rotation

Positive deflection ,

to spars

Paratlel to
flight direction

(d) Antisymmetrical tip torque load.

Figure 1l.- Concluded.
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Flange niormal stress

.1\
25kips
(a) Symmetrical tip bending load.
12 ° Experimentul (ref. 1,2)
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(b) Antisymmetrical tip bending load.
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Figure 12.- Experimental and theoretical spanwise distribution of fla.nge
normal stresses and spar shear stresses of sweptback box beam.
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(4) Antisymmetrical tip torque load.

Figure 12.- Concluded. '
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(b) Antisymmetrical tip bending load.

Figure 13.- BExperimental and theoretical chordwise distribution of normal
stress of sweptback box beam.
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Figure 13.- Concluded.
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(a) Stress distribution’ (b) Flange forces in
in actual structure. . . idealized structure:

Figuré 14.- Shear-lag stresses and forces in actual and idealized
structures.
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Figure 15.- Type of idealized structure required to include shear-lag
effects in the analysis.
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Figure 16.- Calculated effects of bulkhead flexibility on the stresses
and distortions of a swept box beam.
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Figure 17.- Plate-stringer combination analyzed to determine the effective

width.of cover acting with bulkhead.
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Figure 18.- Effective width of plate acting with stringer.

appendix B).

e m e e % A e e e A = —— e o e
B P N .

(See

r=
0y



- ) - NACA TN 2232,

} A
{tc=.078 050 j %7 ' .

f——b=30 ———+

Figure 19.- Idealized outer section used in illustrative example.
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Figure 20.- Idealized carry-through section used in illustrative example.




12

NACA TN 2232 ‘ . 8

o = BT X __ % o Xi%ne
o 0, » %,n""%n ¥ TZa,

A

Figure 21.- Force groups of outer or carry-through sections used in
' illustrative example.
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Figure 22.- Types of individual analyses of outer section used in
illustrative example. )
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R=+| for symmetrical loads
R=-1 for antisymmetrical loads *

Figure 23.- Types of individual ané.lyses of carry-throﬁgh section used
in 1llustrative example. :
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